MATH IS FIGUREOUTABLE!

@pwharris
Problem String

Lesson structure

Series (string) of problems

Intended to facilitate construction of relationships and connections in the learner’s mind

7 x 8
70 x 8
69 x 8
6 x 9
6 x 90
6 x 89
8 x 59
Problem String

Lesson structure

Series (string) of problems

Intended to facilitate construction of relationships and connections in the learner’s mind

\begin{align*}
 y &= x^2 \\
 y &= 3x \\
 y &= x^2 + 3x \\
 y &= x(x + 3)
\end{align*}
Problem Strings Problem Talks

@pwharris
Problem Strings

Problem Talks

(Short lived)

More Than One Way

@pwharris
Problem Strings

Problem Talks

“Poke Around” (short lived)
More Than One Way

@pwharris
Problem Strings

Problem Talks

Compare Towards Efficiency
“Poke Around” (short lived)
More Than One Way

@pwharris
Problem Strings

Construct

Problem Talks

Compare Towards Efficiency

“Poke Around” (short lived)
More Than One Way

@pwharris
Problem Strings

- Construct
- Series of related problems

Problem Talks

- Compare Towards Efficiency
- “Poke Around” (short lived)
- More Than One Way

@pwharris
Problem Strings

- **Construct**
 - Series of related problems
 - Focused toward constructing a particular model, big idea, or strategy

Problem Talks

- **Compare Towards Efficiency**
 - “Poke Around” (short lived)
 - More Than One Way

@pwharris
Problem Strings

Construct

Series of related problems
Focused toward constructing a particular model, big idea, or strategy
Systematically nudges toward more efficient and sophisticated strategies

Problem Talks

Compare Towards Efficiency
“Poke Around” (short lived)
More Than One Way
Problem Strings

Construct
- Series of related problems
- Focused toward constructing a particular model, big idea, or strategy
- Systematically nudges toward more efficient and sophisticated strategies

Problem Talks

Compare Towards Efficiency
- “Poke Around” (short lived)
- More Than One Way
- Fewer problems, often one problem

@pwharris
Problem Strings

Construct
- Series of related problems
- Focused toward constructing a particular model, big idea, or strategy
- Systematically nudges toward more efficient and sophisticated strategies

Problem Talks

Compare Towards Efficiency
- “Poke Around” (short lived)
- More Than One Way
- Fewer problems, often one problem
- Compare already constructed strategies.

@pwharris
Problem Strings

Construct

- Series of related problems
- Focused toward constructing a particular model, big idea, or strategy
- Systematically nudges toward more efficient and sophisticated strategies

Problem Talks

Compare Towards Efficiency

- “Poke Around” (short lived)
- More Than One Way
- Fewer problems, often one problem
- Compare already constructed strategies.
- For these number, this structure, which is clever, elegant, efficient

@pwharris
Problem Strings

Construct
- Series of related problems
- Focused toward constructing a particular model, big idea, or strategy
- Systematically nudges toward more efficient and sophisticated strategies

Problem Talks

Compare Towards Efficiency
- “Poke Around” (short lived)
- More Than One Way
- Fewer problems, often one problem
- Compare already constructed strategies.
- For these number, this structure, which is clever, elegant, efficient
- 15×18 vs 37×99

@pwharris
Problem Strings

Construct

Series of related problems

Focused toward constructing a particular model, big idea, or strategy

Systematically nudges toward more efficient and sophisticated strategies

80%

Problem Talks

Compare Towards Efficiency

“Poke Around” (short lived)

More Than One Way

Fewer problems, often one problem

Compare already constructed strategies.

For these number, this structure, which is clever, elegant, efficient

15 x 18 vs 37 x 99

20%

@pwharris
Problem Strings

- **Construct**
 - Series of related problems
 - Focused toward constructing a particular model, big idea, or strategy
 - Systematically nudges toward more efficient and sophisticated strategies

Problem Talks

- **Compare Towards Efficiency**
 - "Poke Around" (short lived)
 - More Than One Way
 - Fewer problems, often one problem
 - Compare already constructed strategies.
 - For these number, this structure, which is clever, elegant, efficient

15 x 18 vs 37 x 99

@pwharris
Problem Strings

Construct
- Series of related problems
- Focused toward constructing a particular model, big idea, or strategy
- Systematically nudges toward more efficient and sophisticated strategies

Problem Talks

Compare Towards Efficiency
- "Poke Around" (short lived)
- More Than One Way
- Fewer problems, often one problem
- Compare already constructed strategies.
- For these number, this structure, which is clever, elegant, efficient
- 15 x 18 vs 37 x 99

80%

20%

@pwharris
Problem Strings

Construct
- Series of related problems
- Focused toward constructing a particular model, big idea, or strategy
- Systematically nudges toward more efficient and sophisticated strategies

Problem Talks

Compare Towards Efficiency
- Mini-lesson 10 - 20 mins
- Teacher chooses who shares, purposefully
- Teacher models student thinking with a model

- “Poke Around” (short lived)
- More Than One Way
- Fewer problems, often one problem
- Compare already constructed strategies.
- For these number, this structure, which is clever, elegant, efficient

```
15 x 18 vs 37 x 99
```

@pwharris
Problem Strings

Construct
- Series of related problems
- Focused toward constructing a particular model, big idea, or strategy
- Systematically nudges toward more efficient and sophisticated strategies

Problem Talks

Compare Towards Efficiency
- Mini-lesson 10 - 20 mins
- Teacher chooses who shares, purposefully
- Teacher models student thinking with a model
- All strategies are not equal

“Poke Around” (short lived)
- Fewer problems, often one problem
- Compare already constructed strategies.
- For these number, this structure, which is clever, elegant, efficient

80% vs 20%

15 x 18 vs 37 x 99

@pwharris
MATH IS FIGUREOUTABLE!

@pwharris
It’s About Relationships

• Among the numbers and structures to solve problems

• Between teachers and students to mentor and nurture young mathematicians
Empowering math teachers everywhere.

We help teachers teach more students more math more effectively. You are in the right place if you strive to help your students be sense makers, co-creators of their mathematical knowledge, thinking like a mathematician. If you de-emphasize algorithms and rote-memorization. If you believe that math is figureoutable!

Receive weekly emails to help you become the math teacher you want to be.

First name
Email
SIGN UP

MathIsFigureOutAble.com
Join us every Wednesday evening on Twitter and/or Facebook for a new MathStratChat problem. Share your favorite strategy and see how others solve the same problem.

Click on one below to read some of our favorite replies.
QUESTIONS?

@pwharris