PAN HARRIS

equipping math teachers with content & pedagogy for student success

@pwharris
www.MathIsFigureOutAble.com
facebook.com/MathIsFigureOutAble
pharris@byu.net

MATH IS FIGUREOUTABLE!

@pwharris

FAKE MATH: the myth that math is a disconnected set of facts to memorize and rules and procedures to mimic.

REAL MATH: using relationships and connections you own to solve problems. By so doing, learn more real math.

REAL MATH

MATHEMATIZE

MENTOR MATHEMATICIANS

@pwharris

POWERFUL VISUAL MODELS

STRATEGY

NOT THE SAME

MODEL 7 STRATEGY

how you deal with the numbers or structure to solve a problem

Model

representation of a strategy, of relationships; some models can be tools

MODEL

Medel

12

MODEL

Verb

Noun

VERBS

Model - Demonstrate

Model - Demonstrate

Subtract 57-22 $=(5+\frac{5}{6})-(3+\frac{1}{6})$ 1 Reaminge $= 5 + \frac{5}{2} - 2 - \frac{1}{6}$ = $(5 - 2) + (\frac{5}{2} - \frac{1}{6})$ = $3 + \frac{2}{3}$ 5-2=3 $\frac{5}{6} - \frac{1}{6} = \frac{5 - 1}{6}$ ist Add/Subtract Mixed Numbers with Unline denominators 5-2+35

Step#1:-Convert Prito "improper

Step#2:-Find common deno.

Step#3:- Add Subliment Wimerotors

Step#4- Reduce Improper

Step#5:-Convert back Pinto MP/ved Numbers

Model - Demonstrate

10030

Subtract 58-26 $= (5+\frac{5}{6}) - (3+\frac{5}{6})$ 1 Reaminge $= 5 + \frac{5}{5} - 2 - \frac{1}{5}$ $= (5 - 2) + (\frac{5}{5} - \frac{1}{5})$ 5-2=3 $\frac{5}{6} - \frac{1}{6} = \frac{5 - 1}{6}$ ist = 3+3 Add/Subtract Mixed Numbers with Unline denominators Step#1:-Convert 9nto "improper Step#2:-Find common deno. Step#3 - Add Subliment Twimerotors Step#4- Reduce Improper

Step#5:-Convert back 9nto MPried Numbers

23

1

What is 5 times 23? Well, I know 10 x 23 is 230. And 5 is half of 10, so 5 x 23 is 115.

5 x 23 = ?

What is 5 times 23? Well, I know 10 x 23 is 230. And 5 is half of 10, so 5 x 23 is 115.

5 x 23 = ? 10 x 23 = 230

What is 5 times 23? Well, I know 10 x 23 is 230. And 5 is half of 10, so 5 x 23 is 115.

 $5 \times 23 = ?$ $10 \times 23 = 230$ so $5 \times 23 = 115$ NOUNS
Model-Manipulative

Model-Manipulative

Model - Equation, Function, Predictor

Model - Equation, Function, Predictor

Model - Equation, Function, Predictor

Model-Process

Model-Process

Sam sold his old skateboard for \$24 and some other toys for \$12. He is going to use the money to pay for guitar lessons. The cost each lesson is the same every week. Draw a strip diagram to show Sam's cost for 1 month of guitar lessons?

related to . . .

Model - Represent Student Thinking

What is 5 times 23? Well, I know 10 x 23 is 230. And 5 is half of 10, so 5 x 23 is 115.

 $5 \times 23 = ?$ $10 \times 23 = 230$ so $5 \times 23 = 230$

503 - 399

503 - 399

I'm going to find the difference. 399 to 400 is 1, then 103 more is 104.

I'm going to find the difference. 399 to 400 is 1, then 103 more is 104.

503 - 399

503 - 399

I'm going to find the difference. 399 to 400 is 1, then 103 more is 104.

I'll subtract 400, so 503 minus 400 is 103. But I subtracted too much, so 104.

503 - 399

503 - 399

Verb

- Model Demonstrate
- Model Represent Thinking

Noun

- Model Manipulative
- Model Equation (function)
- Model Modeling process
- Model Representation of a Situation
- Model Tool for Thinking/Computation

Verb

- Model Demonstrate
- Model Represent Thinking

Noun

- Model Manipulative
- Model Equation (function)
- Model Modeling process
- Model Representation of a Situation
- Model Tool for Thinking/Computation

Model of a Situation Model of Thinking Model for Thinking (as a tool)

Fosnot & Dolk

@pwharris

EXPRESS

REPRESENT

Models for Thinking

Models for Thinking (as tools for reasoning

how you deal with the numbers or structure to solve a problem

Model

representation of a strategy, of relationships; some models can be tools

how you deal with the numbers or structure to solve a problem

Model

representation of a strategy, of relationships; some models can be tools

@pwharris

Model

representation of a strategy, of relationships; some models can be tools

Model

representation of a strategy, of relationships; some models can be tools

What is 5 times 23? Well, I know 10 x 23 is 230. And 5 is half of 10, so 5 x 23 is 115.

Model

representation of a strategy, of relationships; some models can be tools

What is 5 times 23? Well, I know 10 x 23 is 230. And 5 is half of 10, so 5 x 23 is 115.

Model

representation of a strategy, of relationships; some models can be tools

What is 5 times 23? Well, I know 10 x 23 is 230. And 5 is half of 10, so 5 x 23 is 115.

@pwharris

 $5 \times 23 = ?$

$10 \times 23 = 230$

so 5 x 23 = 115

PAM HARRIS

Model

representation of a strategy, of relationships; some models can be tools

• Mistakenly think that all strategies are equal

Strategy

Model

how you deal with the numbers or structure to solve a problem representation of a strategy, of relationships; some models can be tools

- Mistakenly think that all strategies are equal
- There's a vast, unlimited, unknowable number of "strategies"

Strategy

Model

how you deal with the numbers or structure to solve a problem representation of a strategy, of relationships; some models can be tools

- Mistakenly think that all strategies are equal
- There's a vast, unlimited, unknowable number of "strategies"
- Students forced to find "another way" often use less sophisticated strategies.

MODELS & MODELING MATH

MAKE THE RELATIONSHIPS VISIBLE

TEACH REAL MATH

TELL REAL MATH

EXPERIENCE REAL MATH

MATHEMATIZE

MANALCRY TRACKS

TRANSPARENT

MENTOR MATHEMATICIANS

MATH IS FIGUREOUTABLE!

It's About Relationships

- Among the numbers and structures to solve problems
- Between teachers and students to mentor and nurture young mathematicians

QUESTIONS?

PAN HARRIS

equipping math teachers with content & pedagogy for student success

@pwharris
www.MathIsFigureOutAble.com
facebook.com/MathIsFigureOutAble
pharris@byu.net