Using Robotics to Teach Math 11.05.2019 Harry Wood

National Technical Institute for the Deaf NTID Regional STEM Center ADB for Deaf and Blind

Did You Know?

Leonardo da Vinci sketched plans for a humanoid robot in the late 1400s. It was a mechanical knight.

National Technical Institute for the Deaf **NTID Regional STEM Center**

Introduction

NTID Regional STEM Center ADB for Deaf and Blind

55% of robotics students go on to major in science or engineering.

NRSC Workshops - Accessibility

Have workshops for mainstream teachers

1. Addresses accessibility, hearing loss, interpreter use, etc.

1. Flexible - 2 hrs to all day

NRSC Workshops - Robotics

Have workshops for:

1. VEX Robotics

1. Robotics for the classroom

NRSC Workshops

- ACT Testing Strategies
- English/Literacy Strategies in classroom
- Cybersecurity
- Math
- Science

National Technical Institute for the Deaf **NTID Regional STEM Center**

STEM BUS

Robots help with STEM skills

Students learn:

- logic & patterns
- following step by step directions
- leads to understanding of complex machines
- frustration is normal and okay
- problem solving
- people skills

National Technical Institute for the Deaf **NTID Regional STEM Center**

Alabama Institute for Deaf and Blind

Curriculum Connections:

- Common Core (CC) for Math
- Standards for Technological Literacy (STL)
- Next Generation Science Standards (NGSS)
- ASL Standards (Clerc Center)

National Technical Institute for the Deaf **NTID Regional STEM Center**

Common Core Math Connections

Domain #	# Grade Cluster		Standard	Unit Activities		
4.OA	4	Operations and Algebraic Thinking	Use the four operations with whole numbers to solve problems.	 Idea Book Pages 		
4.MD	4	Measurement and Data	Solve problems involving measurement and conversion of measurements from a larger unit to a smaller unit.	 Idea Book Pages 		
4.MD	4	Measurement and Data	Represent and interpret data.	- Idea Book Pages		
6.EE	6	Expressions and Equations	Represent and analyze quantitative relationships between dependent and independent variables.	- Idea Book Pages		
7.RP	7	Ratios and Proportional Relationships	Analyze proportional relationships and use them to solve real-world and mathematical problems.	- Idea Book Pages		

STL Connections

		toorniology and other noide of otday.			
3.C	3-5	Students will develop an understanding of the relationships among technologies and the connections between technology and other fields of study.	Various relationships exist between technology and other fields of study.	- (4 - (Matching Exercise Optional Research Activity Optional Idea Book Exercise
3.F	6-8	Students will develop an understanding of the relationships among technologies and the connections between technology and other fields of study.	Knowledge gained from other fields of study has a direct effect on the development of technological products and systems.	- (/ - (Matching Exercise Optional Research Activity Optional Idea Book Exercise

Next Generation Science Standards

Grade	Category	PE Code	Performance Expectation (PE)	Unit Activities
4	Energy	4-PS3-1	Use evidence to construct an explanation relating the speed of an object to the energy of that object.	 Challenge Robot Build Idea Book Pages/ Engineering Notebook
4	Energy	4-PS3-4	Apply scientific ideas to design, test, and refine a device that converts energy from one form to another.	 Challenge Robot Build Idea Book Pages/ Engineering Notebook
3-5	Engineering Design	3-5-ETS1-1	Define a simple design problem reflecting a need or a want that includes specified criteria for success and constraints on materials, time, or cost.	 Challenge Robot Build Idea Book Pages/ Engineering Notebook Following Challenge Rules
3-5	Engineering Design	3-5-ETS1-2	Generate and compare multiple possible solutions to a problem based on how well each is likely to meet the criteria and constraints of the problem.	 Challenge Robot Build Programming Activities Idea Book Pages/ Engineering Notebook Following Challenge Rules

Next Generation Science Standards

6-8	Energy	MS-PS3-5	Construct, use, and present arguments to support the claim that when the motion energy of an object changes, energy is transferred to or from the object.	1	Challenge Robot Build Idea Book Pages/ Engineering. Notebook
6-8	Engineering Design	MS-ETS1-2	Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem.	-	Challenge Robot Build Idea Book Pages/ Engineering. Notebook

ASL Standards -

Discourse and Presentation-

• Engage effectively in a range of collaborative discussions (e.g., one-on-one, in groups, teacher-led) with diverse partners on grade 6(and 7&8) topics, texts, and issues, building on others' ideas and expressing their own clearly.

Language -

• Demonstrate command of the standard ASL grammar and usage when signing (live and published). Use knowledge of language and its structure when signing and viewing (live and published).

National Technical Institute for the Deaf **NTID Regional STEM Center**

Code & Go

It is fun and introduces very BASIC coding.

Good for developing counting and pattern skills.

National Technical Institute for the Deaf **NTID Regional STEM Center**

Code & Go

Has cards with challenges

Students can design their own maze.

National Technical Institute for the Deaf **NTID Regional STEM Center**

Code & Go

Activity need a volunteer!

BeeBot

Another BASIC coding robot. Can use with younger ages. Topics: counting, ABCs, insects

National Technical Institute for the Deaf **NTID Regional STEM Center**

Wonder Workshop - Dash and Dot

Works well with math.

Good with shape lessons.

Apps are available and free.

Wonder Workshop - Dash

Activity - Need a volunteer!

Wonder Workshop - Dash

Show me 7 on the number line
 Create a number sentence
 Create a shape

National Technical Institute for the Deaf **NTID Regional STEM Center**

Using Blockly app with Dash to make a number

Level 1 challenge - Pick a number between 1 and 10 - make Dash move that many times forward and/or backward.

Level 2 challenge - How can you use coding blocks to move forward 100cm or 200cm in 2 movements? 3 movements? Record on paper or digitally. How do we know if our distances with Dash are accurate?

National Technical Institute for the Deaf **NTID Regional STEM Center**

Using Blockly app with Dash to make a number

Level 3 challenge -

How can you use coding blocks to move forward or backward tp end up 100cm or 200cm ahead after 3 movements? 4? 5? Record your number sentence with addition and subtraction on paper or digitally.

National Technical Institute for the Deaf **NTID Regional STEM Center**

Alabama Institute for Deaf and Blind

Sphero

- Very grade flexible
- Basic to complex code
- Deals with more complex math
 - Degrees, minutes, angles
 - Geometric shapes
 - Physics

National Technical Institute for the Deaf **NTID Regional STEM Center**

Sphero

LittleBits

 Makes a platform of eas to-use electronic buildin blocks

- Blocks are
 - Color-coded
 - Magnetic
 - Reusable

National Technical Institute for the Deaf **NTID Regional STEM Center**

Each Bit is color-coded by its function in the circuit.

P3 USb power	i18 motion trigger		
Power	Input	Output	Logio
National Technical Institute	Alabama Institute for Deaf and Blind		

Activity - Money Scales

NTID Regional STEM Center ADB for Deaf and Blind

VEX Robotics

Students learn how to:

plan robots - design/planning skills
 build robots - engineering skills
 program robots - coding skills
 teamwork - soft skills
 troubleshoot - logical/problem solving skills

National Technical Institute for the Deaf **NTID Regional STEM Center**

Have competitions at regional, state, and world levels

National Technical Institute for the Deaf **NTID Regional STEM Center**

B Alabama Institute for Deaf and Blind

At first, it was kind of confusing and awkward, but we persevered and kept a positive outlook.

Curriculum - Project Lead the Way can be used

VEX does have their own curriculum to support their platforms

VEX IQ - 3rd - 8th grades VEX VRC - 6th - 12th grades

National Technical Institute for the Deaf **NTID Regional STEM Center**

NRSC Online

<u>Website</u> - www.aidb.org/nrsc

Facebook - NTID Regional STEM Center - @nrscenter - @nrscenter

Thank you for attending!

Harry Wood 256-474-0243 (VP) 256-589-0494 (text) (or grab my business card)

HERW RORO makeameme.org

ROBOTS

